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Abstract

Over the past two decades, genomic and omics data generation has increased
exponentially. High-throughput sequencing technologies, GWAS, and large-scale
biobank projects have produced datasets containing millions of genetic variants
across diverse human populations. These data promise deep insights into genetic
contributions to disease risk, progression, and therapeutic response. However,
conventional statistical models — like linear or logistic regression — frequently
fail to capture complex genotype—phenotype relationships, epistasis (gene—gene
interactions), nonlinearity, and the influence of regulatory or epigenetic factors
(especially for complex diseases) (Cordell, 2009).

Al, encompassing ML and DL, offers powerful solutions. By learning from large-
scale data, Al models can identify subtle patterns, nonlinear interactions, and
complex dependencies that classical models may miss. Recent years have seen a
surge in applying Al to human genomics for tasks such as variant effect
prediction, polygenic risk scoring, disease classification, and multi-omics
integration (Alharbi & Rashid, 2022). This review provides a comprehensive
synthesis of these developments, outlines methodological frameworks, discusses
empirical applications and performance, evaluates challenges, and surveys future
directions in Al-enabled genomic analysis.

176 |Page



Modern American Journal of Medical and

Health Sciences
ISSN (E): 3067-803X
iy Volume 01, Issue 09, December, 2025

USA
Website: usajournals.org
This work is Licensed under CC BY 4.0 a Creative Commons Attribution
4.0 International License.

* k kK Kk

2. METHODS, DATA SOURCES, AND ANALYTICAL FRAMEWORKS
2.1 Types of Genomic Data and Typical Datasets

Al-based genomic analysis relies on diverse data sources:

1. Whole-genome sequencing (WGS) / Whole-exome sequencing (WES):
Provides single nucleotide variants (SNVs), insertions/deletions (indels),
structural variants, copy-number variants, enabling comprehensive variant
discovery.

2. GWAS genotype data: Large cohorts with SNP arrays or imputed genotypes,
often linked to phenotypic and clinical information.

3. Transcriptomics (e.g., RNA-seq), epigenomics (e.g., DNA methylation,
chromatin accessibility), proteomics — used in multi-omics integration to capture
regulatory and functional layers beyond static DNA variants.

4. Clinical / phenotypic data: From electronic health records (EHRs), biobank
metadata, disease status, environmental exposures — enabling genotype—
phenotype association studies, risk prediction models.

These data often require intensive preprocessing: quality control, imputation of
missing genotypes, normalization (for expression data), encoding (e.g., genotype
encoding as 0/1/2), and sometimes dimensionality reduction or feature selection
(e.g., filtering variants, principal component analysis).

Large-scale public or semi-public datasets commonly used include UK Biobank
(for European ancestry), disease-specific cohorts, and disease-control GWAS
datasets.

2.2 Machine Learning and Deep Learning Methodologies

2.2.1 Traditional Machine Learning (ML) Approaches

Classical ML algorithms remain widely applied for genomic risk prediction,
especially when interpretability or computational efficiency is desired, or sample
sizes are modest. Typical methods include:

1. Random Forests (RF) and Gradient Boosting Machines (GBM / XGBoost):
These can model non-linear relationships, interactions among variants, and work
well with structured genotype features (e.g., summary scores, engineered
features).
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2. Support Vector Machines (SVMs): Employed for classification tasks, such as
distinguishing cases vs controls, or pathogenic vs benign variants.

3. Feature selection methods (filter-based, wrapper-based, regularization like
LASSO) are often paired with ML to reduce the dimensionality (from thousands—
millions of variants) and avoid overfitting.

These methods provide balance between interpretability and performance, and
are often used in polygenic risk scoring or variant prioritization.

2.2.2 Deep Learning (DL) Approaches

Deep learning has proven particularly effective for large genomic datasets, with
architectures able to learn hierarchical, non-linear representations:

1. Multilayer Perceptrons (MLPs): Applied to SNP-based genotype arrays or
processed variant features for phenotype classification or risk scoring. Some
studies report high AUC values when training on large cohorts.

2. Convolutional Neural Networks (CNNs): Useful for sequence-level data (raw
DNA sequence, regulatory region sequences), capturing spatial patterns (e.g.,
motifs, regulatory elements). For example, CNNs have been used to analyze NGS
data for variant effect prediction and capture regulatory features (Alharbi &
Rashid, 2022).

3. Autoencoders / representation learning: Used for dimensionality reduction and
denoising of high-dimensional omics data (e.g., gene expression), before
downstream classification or regression tasks.

4. Multi-omics integration models: DL architectures that ingest data from
multiple omics layers (e.g., genomics, transcriptomics, epigenomics) to build
comprehensive predictive models — especially valuable in cancer genomics or
complex diseases where regulation and expression matter, not just genotype
(Alharbi & Rashid, 2022).

5. Transformer-based architectures and attention mechanisms: Recent work
proposes transformer-based frameworks to model long-range dependencies in
genomic data (e.g., over entire chromosomes) and handle very large numbers of
variants. A 2025 study introduced Ge-SAND — a self-attention deep learning
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model that captures complex genetic interactions at scale for disease risk
prediction.

These DL methods excel at capturing complex, high-order interactions, non-
linear dependencies, and multi-layered regulatory effects.

2.3 Evaluation Metrics and Validation Strategies

To assess model performance in genomic risk prediction or classification tasks,
common metrics include:

1. Receiver-Operating Characteristic — Area Under Curve (ROC-AUC): Widely
used for binary disease / control prediction.

2. Precision, recall, Fl-score, area under precision-recall curve (PR-AUC):
Especially relevant for imbalanced datasets (rare diseases).

3. Calibration metrics: Evaluating whether predicted risk probabilities match
observed outcomes (important for clinical translation).

4. Cross-validation (k-fold, stratified), external wvalidation on independent
cohorts, and, where possible, replication across different datasets/populations.

5. Explainability measures: For DL. models, methods like attention scores, feature
importance (e.g., SHAP values), or saliency maps are used to understand which
variants/regions drive predictions — a growing necessity for biological
interpretability and clinical trust.

3.EMPIRICAL APPLICATIONS AND PERFORMANCE OF AI IN
GENOMIC RISK PREDICTION

3.1 Overview of Al Use in Genomics: Recent Trends

A comprehensive review by Wardah S. Alharbi & Mamoon Rashid (2022)
summarized broad application of deep learning across human genomics,
including variant calling, regulatory region prediction, gene expression inference,
epigenetic state prediction, and disease classification. They highlighted that DL
has been adopted in multiple subfields — but some areas (e.g., structural variant
interpretation, long-read sequencing) remain under-charted.

Key takeaway: Al is no longer niche but mainstream in genomic research, and its
adoption keeps growing rapidly.
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3.2 Case Study: Ge-SAND — Modeling Complex Genetic Interactions

A breakthrough example is the 2025 study introducing Ge-SAND, which employs
a self-attention deep learning framework to detect large-scale, high-order
genotype interactions and predict disease risk (e.g., Crohn’s disease,
schizophrenia, Alzheimer’s disease

1. Performance gains: On real-world datasets, Ge-SAND exhibited up to ~20%
improvement in AUC-ROC compared to conventional methods.

2. Interpretability: Through attention scores, the model identifies SNP—SNP
interaction pairs potentially contributing to disease risk, offering biologically
plausible hypotheses rather than “black-box’ predictions.

3. Scalability: By embedding genomic loci and using attention mechanisms,
Ge-SAND can handle large genotype datasets — addressing the “curse of
dimensionality” common in genomics.

This work illustrates the potential of transformer-derived architectures for whole-
genome risk modeling, particularly when interactions beyond additive effects
matter.

3.3 Multi-omics Integration and DL in Disease Subtyping & Prognosis
Beyond genotype-based risk scoring, DL has been widely applied in multi-omics
integration — combining genomics with gene expression, methylation,
proteomics — to improve disease subtype classification, prognosis prediction,
and biomarker discovery. For instance, Alharbi & Rashid (2022) report multiple
studies in cancer genomics where DL models ingest both sequence and
expression data to stratify tumor subtypes, predict survival, and suggest
therapeutic targets.

These integrative models often outperform single-omic or classical models as
they capture multilayer biological regulation (genetic, epigenetic, transcriptional)
— especially important in complex diseases where non-coding variants and
regulatory changes play critical roles.
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3.4 Polygenic Risk Scores (PRS) Enhanced by Al

Traditional PRS methods — summing risk alleles weighted by effect sizes from
GWAS — assume additive effects and ignore interactions, epistasis, and non-
linear dependencies. Al methods (ML or DL) can extend PRS by modeling non-
additive effects, interactions, and including rare variants, thus improving
predictive power, especially in diseases with complex genetic architecture (e.g.,
autoimmune disorders, neurodegenerative diseases, metabolic conditions).
Although comprehensive systematic reviews remain limited, mounting empirical
evidence supports Al-informed PRS as a promising direction for personalized risk
stratification.

4. CHALLENGES, LIMITATIONS, AND ETHICAL CONSIDERATIONS
Despite impressive advances, several limitations and challenges remain in
applying Al to genomic data — particularly when translating to clinical or public
health contexts.

4.1 High Dimensionality, Overfitting, and “Large p, Small n” Problem
Genomic datasets often include millions of variants (features) but relatively few
samples (“p > n”). Without careful regularization, dimensionality reduction, or
sufficiently large sample sizes, ML/DL models risk severe overfitting. Feature
selection, embedding strategies, and cross-validation are crucial, but even these
may not fully mitigate overfitting for rare diseases or small cohorts.

4.2 Population Bias and Generalizability

Most large publicly available genomic datasets (e.g., UK Biobank) are skewed
toward individuals of European ancestry. Models trained on such datasets may
not generalize to other ancestries, limiting equity and applicability. Using Al may
exacerbate these disparities if not carefully validated across diverse populations.

4.3 Interpretability and Biological Plausibility

Deep learning models — especially complex architectures — are often criticized
as “black boxes.” For adoption in clinical genomics, interpretability is critical:
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researchers and clinicians need to know which variants, interactions, or
regulatory features drive risk predictions, and whether these make biological
sense. Without interpretability, Al predictions may lack trust and hinder
translation.

Even models that offer some interpretability (e.g., via attention scores) must be
validated carefully: attention does not always equal biological causality.
Hypothesized variant interactions must ideally be tested via functional genomics
or experimental validation.

4.4 Data Privacy, Sharing, and Ethical Concerns

Genomic data is sensitive. Aggregating, sharing, or centralizing raw genotype or
sequence data raises privacy and consent issues. Moreover, individuals’ risk
predictions may impact insurance, employment, or psychological well-being.
Emerging solutions include federated learning (training models across
decentralized datasets without sharing raw data), privacy-preserving
architectures, and strict consent frameworks — but they remain under
development, and regulatory/ethical frameworks often lag behind the technology.

4.5 Computational and Infrastructure Demands

Large-scale DL models (especially transformer-based) on whole-genome data
require substantial computational resources (memory, GPUs), efficient data
pipelines, and specialized expertise (bioinformatics + ML). This can limit
applicability in resource-constrained settings or smaller research groups.

5. FUTURE DIRECTIONS & RECOMMENDATIONS
Based on current trends, literature, and existing gaps, we suggest several key
research directions and best practices for future work:

5.1 Embrace Explainable AI (XAI) and Interpretability-First Models

Develop and employ models that prioritize interpretability — e.g., attention-
based architectures, feature attribution methods (SHAP, Integrated Gradients),
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pathway-aware modeling — to ensure biological plausibility and clinical trust.
Studies like Ge-SAND mark a promising direction.

5.2 Expand Diversity: Use Multi-ethnic / Global Cohorts

Construct and validate models on diverse population datasets to avoid ancestry
bias, improve generalizability, and ensure equitable precision medicine.
Encourage data sharing across consortia, with consent and ethical safeguards.

5.3 Adopt Federated Learning and Privacy-Preserving Frameworks

Use federated learning architectures or secure aggregation protocols to enable
collaborative genomic modeling without raw data exchange, thus respecting
privacy while leveraging large datasets.

5.4 Leverage Multi-omics Integration for Comprehensive Risk Modeling
Combine genomic, transcriptomic, epigenomic, proteomic, and clinical data to
build richer predictive models that reflect multiple biological layers. Deep
learning is particularly suited to integrate such heterogeneous data.

5.5 Explore Transformer / LLM-Based Genomic Models

Given the success of attention-based models in non-genomic domains,
transformer architectures and large language models (LLMs) tailored for genome
data represent an emerging paradigm. Recent studies propose using such models
for variant effect prediction and risk scoring.

5.6 Rigorously Validate Models with Independent Cohorts & Functional
Studies

Beyond statistical validation, candidate variant interactions or risk-predictive
features identified by Al should be cross-validated in independent datasets and
— when possible — subjected to functional validation (cellular assays, CRISPR
screens) to confirm biological relevance.

183 | Page



Modern American Journal of Medical and

Health Sciences
ISSN (E): 3067-803X
iy Volume 01, Issue 09, December, 2025

USA
Website: usajournals.org
This work is Licensed under CC BY 4.0 a Creative Commons Attribution
4.0 International License.

* k kK Kk

6. CONCLUSION

Al algorithms — particularly deep learning and modern ML — have transformed
genomic data analysis and disease risk prediction. They enable researchers to
harness the complexity of high-dimensional genotype data, capture non-linear
and high-order interactions, integrate multiple omics layers, and deliver
predictive performance beyond classical statistical models.

Empirical successes (e.g., multi-omics cancer subtype classification, transformer-
based risk models such as Ge-SAND) illustrate the potential for Al to underline
precision medicine and personalized risk stratification.

However, significant challenges remain: overfitting, population bias,
interpretability, computational demands, and ethical/privacy concerns. To realize
the full potential of Al-driven genomics, future work must combine technical
innovation (XAI, federated learning, multi-omics integration) with rigorous
validation, inclusive datasets, and responsible ethical frameworks.

Overall, Al stands as a cornerstone technology for the future of genomics — but
realizing its promise for human health requires careful, multidisciplinary, and
ethically grounded efforts.
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