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Abstract 

Over the past two decades, genomic and omics data generation has increased 

exponentially. High-throughput sequencing technologies, GWAS, and large-scale 

biobank projects have produced datasets containing millions of genetic variants 

across diverse human populations. These data promise deep insights into genetic 

contributions to disease risk, progression, and therapeutic response. However, 

conventional statistical models — like linear or logistic regression — frequently 

fail to capture complex genotype–phenotype relationships, epistasis (gene–gene 

interactions), nonlinearity, and the influence of regulatory or epigenetic factors 

(especially for complex diseases) (Cordell, 2009). 

AI, encompassing ML and DL, offers powerful solutions. By learning from large-

scale data, AI models can identify subtle patterns, nonlinear interactions, and 

complex dependencies that classical models may miss. Recent years have seen a 

surge in applying AI to human genomics for tasks such as variant effect 

prediction, polygenic risk scoring, disease classification, and multi‑omics 

integration (Alharbi & Rashid, 2022). This review provides a comprehensive 

synthesis of these developments, outlines methodological frameworks, discusses 

empirical applications and performance, evaluates challenges, and surveys future 

directions in AI-enabled genomic analysis. 
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2. METHODS, DATA SOURCES, AND ANALYTICAL FRAMEWORKS 

2.1 Types of Genomic Data and Typical Datasets 

AI-based genomic analysis relies on diverse data sources: 

1. Whole-genome sequencing (WGS) / Whole-exome sequencing (WES): 

Provides single nucleotide variants (SNVs), insertions/deletions (indels), 

structural variants, copy-number variants, enabling comprehensive variant 

discovery. 

2. GWAS genotype data: Large cohorts with SNP arrays or imputed genotypes, 

often linked to phenotypic and clinical information. 

3. Transcriptomics (e.g., RNA‑seq), epigenomics (e.g., DNA methylation, 

chromatin accessibility), proteomics — used in multi‑omics integration to capture 

regulatory and functional layers beyond static DNA variants. 

4. Clinical / phenotypic data: From electronic health records (EHRs), biobank 

metadata, disease status, environmental exposures — enabling genotype–

phenotype association studies, risk prediction models. 

These data often require intensive preprocessing: quality control, imputation of 

missing genotypes, normalization (for expression data), encoding (e.g., genotype 

encoding as 0/1/2), and sometimes dimensionality reduction or feature selection 

(e.g., filtering variants, principal component analysis). 

Large-scale public or semi-public datasets commonly used include UK Biobank 

(for European ancestry), disease‑specific cohorts, and disease-control GWAS 

datasets. 

 

2.2 Machine Learning and Deep Learning Methodologies 

2.2.1 Traditional Machine Learning (ML) Approaches 

Classical ML algorithms remain widely applied for genomic risk prediction, 

especially when interpretability or computational efficiency is desired, or sample 

sizes are modest. Typical methods include: 

1. Random Forests (RF) and Gradient Boosting Machines (GBM / XGBoost): 

These can model non-linear relationships, interactions among variants, and work 

well with structured genotype features (e.g., summary scores, engineered 

features). 
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2. Support Vector Machines (SVMs): Employed for classification tasks, such as 

distinguishing cases vs controls, or pathogenic vs benign variants. 

3. Feature selection methods (filter-based, wrapper-based, regularization like 

LASSO) are often paired with ML to reduce the dimensionality (from thousands–

millions of variants) and avoid overfitting. 

These methods provide balance between interpretability and performance, and 

are often used in polygenic risk scoring or variant prioritization. 

 

2.2.2 Deep Learning (DL) Approaches 

Deep learning has proven particularly effective for large genomic datasets, with 

architectures able to learn hierarchical, non-linear representations: 

1. Multilayer Perceptrons (MLPs): Applied to SNP‑based genotype arrays or 

processed variant features for phenotype classification or risk scoring. Some 

studies report high AUC values when training on large cohorts. 

2. Convolutional Neural Networks (CNNs): Useful for sequence-level data (raw 

DNA sequence, regulatory region sequences), capturing spatial patterns (e.g., 

motifs, regulatory elements). For example, CNNs have been used to analyze NGS 

data for variant effect prediction and capture regulatory features (Alharbi & 

Rashid, 2022).  

3. Autoencoders / representation learning: Used for dimensionality reduction and 

denoising of high‑dimensional omics data (e.g., gene expression), before 

downstream classification or regression tasks. 

4. Multi‑omics integration models: DL architectures that ingest data from 

multiple omics layers (e.g., genomics, transcriptomics, epigenomics) to build 

comprehensive predictive models — especially valuable in cancer genomics or 

complex diseases where regulation and expression matter, not just genotype 

(Alharbi & Rashid, 2022).  

5. Transformer-based architectures and attention mechanisms: Recent work 

proposes transformer-based frameworks to model long-range dependencies in 

genomic data (e.g., over entire chromosomes) and handle very large numbers of 

variants. A 2025 study introduced Ge-SAND — a self-attention deep learning 
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model that captures complex genetic interactions at scale for disease risk 

prediction.  

These DL methods excel at capturing complex, high-order interactions, non-

linear dependencies, and multi-layered regulatory effects. 

 

2.3 Evaluation Metrics and Validation Strategies 

To assess model performance in genomic risk prediction or classification tasks, 

common metrics include: 

1. Receiver‑Operating Characteristic — Area Under Curve (ROC-AUC): Widely 

used for binary disease / control prediction. 

2. Precision, recall, F1-score, area under precision-recall curve (PR-AUC): 

Especially relevant for imbalanced datasets (rare diseases). 

3. Calibration metrics: Evaluating whether predicted risk probabilities match 

observed outcomes (important for clinical translation). 

4. Cross-validation (k-fold, stratified), external validation on independent 

cohorts, and, where possible, replication across different datasets/populations. 

5. Explainability measures: For DL models, methods like attention scores, feature 

importance (e.g., SHAP values), or saliency maps are used to understand which 

variants/regions drive predictions — a growing necessity for biological 

interpretability and clinical trust. 

 

3.EMPIRICAL APPLICATIONS AND PERFORMANCE OF AI IN 

GENOMIC RISK PREDICTION 

3.1 Overview of AI Use in Genomics: Recent Trends 

A comprehensive review by Wardah S. Alharbi & Mamoon Rashid (2022) 

summarized broad application of deep learning across human genomics, 

including variant calling, regulatory region prediction, gene expression inference, 

epigenetic state prediction, and disease classification. They highlighted that DL 

has been adopted in multiple subfields — but some areas (e.g., structural variant 

interpretation, long-read sequencing) remain under-charted.  

Key takeaway: AI is no longer niche but mainstream in genomic research, and its 

adoption keeps growing rapidly. 
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3.2 Case Study: Ge‑SAND — Modeling Complex Genetic Interactions 

A breakthrough example is the 2025 study introducing Ge-SAND, which employs 

a self‑attention deep learning framework to detect large-scale, high-order 

genotype interactions and predict disease risk (e.g., Crohn’s disease, 

schizophrenia, Alzheimer’s disease 

1. Performance gains: On real-world datasets, Ge-SAND exhibited up to ~20% 

improvement in AUC‑ROC compared to conventional methods.  

2. Interpretability: Through attention scores, the model identifies SNP–SNP 

interaction pairs potentially contributing to disease risk, offering biologically 

plausible hypotheses rather than “black-box” predictions. 

3. Scalability: By embedding genomic loci and using attention mechanisms, 

Ge‑SAND can handle large genotype datasets — addressing the “curse of 

dimensionality” common in genomics.  

This work illustrates the potential of transformer-derived architectures for whole-

genome risk modeling, particularly when interactions beyond additive effects 

matter. 

 

3.3 Multi‑omics Integration and DL in Disease Subtyping & Prognosis 

Beyond genotype-based risk scoring, DL has been widely applied in multi-omics 

integration — combining genomics with gene expression, methylation, 

proteomics — to improve disease subtype classification, prognosis prediction, 

and biomarker discovery. For instance, Alharbi & Rashid (2022) report multiple 

studies in cancer genomics where DL models ingest both sequence and 

expression data to stratify tumor subtypes, predict survival, and suggest 

therapeutic targets.  

These integrative models often outperform single-omic or classical models as 

they capture multilayer biological regulation (genetic, epigenetic, transcriptional) 

— especially important in complex diseases where non-coding variants and 

regulatory changes play critical roles. 
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3.4 Polygenic Risk Scores (PRS) Enhanced by AI 

Traditional PRS methods — summing risk alleles weighted by effect sizes from 

GWAS — assume additive effects and ignore interactions, epistasis, and non-

linear dependencies. AI methods (ML or DL) can extend PRS by modeling non-

additive effects, interactions, and including rare variants, thus improving 

predictive power, especially in diseases with complex genetic architecture (e.g., 

autoimmune disorders, neurodegenerative diseases, metabolic conditions). 

Although comprehensive systematic reviews remain limited, mounting empirical 

evidence supports AI‑informed PRS as a promising direction for personalized risk 

stratification. 

 

4. CHALLENGES, LIMITATIONS, AND ETHICAL CONSIDERATIONS 

Despite impressive advances, several limitations and challenges remain in 

applying AI to genomic data — particularly when translating to clinical or public 

health contexts. 

 

4.1 High Dimensionality, Overfitting, and “Large p, Small n” Problem 

Genomic datasets often include millions of variants (features) but relatively few 

samples (“p ≫ n”). Without careful regularization, dimensionality reduction, or 

sufficiently large sample sizes, ML/DL models risk severe overfitting. Feature 

selection, embedding strategies, and cross-validation are crucial, but even these 

may not fully mitigate overfitting for rare diseases or small cohorts. 

 

4.2 Population Bias and Generalizability 

Most large publicly available genomic datasets (e.g., UK Biobank) are skewed 

toward individuals of European ancestry. Models trained on such datasets may 

not generalize to other ancestries, limiting equity and applicability. Using AI may 

exacerbate these disparities if not carefully validated across diverse populations. 

 

4.3 Interpretability and Biological Plausibility 

Deep learning models — especially complex architectures — are often criticized 

as “black boxes.” For adoption in clinical genomics, interpretability is critical: 
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researchers and clinicians need to know which variants, interactions, or 

regulatory features drive risk predictions, and whether these make biological 

sense. Without interpretability, AI predictions may lack trust and hinder 

translation. 

Even models that offer some interpretability (e.g., via attention scores) must be 

validated carefully: attention does not always equal biological causality. 

Hypothesized variant interactions must ideally be tested via functional genomics 

or experimental validation. 

 

4.4 Data Privacy, Sharing, and Ethical Concerns 

Genomic data is sensitive. Aggregating, sharing, or centralizing raw genotype or 

sequence data raises privacy and consent issues. Moreover, individuals’ risk 

predictions may impact insurance, employment, or psychological well‑being. 

Emerging solutions include federated learning (training models across 

decentralized datasets without sharing raw data), privacy‑preserving 

architectures, and strict consent frameworks — but they remain under 

development, and regulatory/ethical frameworks often lag behind the technology. 

 

4.5 Computational and Infrastructure Demands 

Large-scale DL models (especially transformer-based) on whole-genome data 

require substantial computational resources (memory, GPUs), efficient data 

pipelines, and specialized expertise (bioinformatics + ML). This can limit 

applicability in resource-constrained settings or smaller research groups. 

 

5. FUTURE DIRECTIONS & RECOMMENDATIONS 

Based on current trends, literature, and existing gaps, we suggest several key 

research directions and best practices for future work: 

 

5.1 Embrace Explainable AI (XAI) and Interpretability-First Models 

Develop and employ models that prioritize interpretability — e.g., attention-

based architectures, feature attribution methods (SHAP, Integrated Gradients), 
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pathway-aware modeling — to ensure biological plausibility and clinical trust. 

Studies like Ge‑SAND mark a promising direction.  

 

5.2 Expand Diversity: Use Multi‑ethnic / Global Cohorts 

Construct and validate models on diverse population datasets to avoid ancestry 

bias, improve generalizability, and ensure equitable precision medicine. 

Encourage data sharing across consortia, with consent and ethical safeguards. 

 

5.3 Adopt Federated Learning and Privacy-Preserving Frameworks 

Use federated learning architectures or secure aggregation protocols to enable 

collaborative genomic modeling without raw data exchange, thus respecting 

privacy while leveraging large datasets. 

 

5.4 Leverage Multi‑omics Integration for Comprehensive Risk Modeling 

Combine genomic, transcriptomic, epigenomic, proteomic, and clinical data to 

build richer predictive models that reflect multiple biological layers. Deep 

learning is particularly suited to integrate such heterogeneous data. 

 

5.5 Explore Transformer / LLM-Based Genomic Models 

Given the success of attention-based models in non-genomic domains, 

transformer architectures and large language models (LLMs) tailored for genome 

data represent an emerging paradigm. Recent studies propose using such models 

for variant effect prediction and risk scoring.  

 

5.6 Rigorously Validate Models with Independent Cohorts & Functional 

Studies 

Beyond statistical validation, candidate variant interactions or risk-predictive 

features identified by AI should be cross-validated in independent datasets and 

— when possible — subjected to functional validation (cellular assays, CRISPR 

screens) to confirm biological relevance. 
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6. CONCLUSION 

AI algorithms — particularly deep learning and modern ML — have transformed 

genomic data analysis and disease risk prediction. They enable researchers to 

harness the complexity of high-dimensional genotype data, capture non-linear 

and high-order interactions, integrate multiple omics layers, and deliver 

predictive performance beyond classical statistical models. 

Empirical successes (e.g., multi-omics cancer subtype classification, transformer-

based risk models such as Ge‑SAND) illustrate the potential for AI to underline 

precision medicine and personalized risk stratification. 

However, significant challenges remain: overfitting, population bias, 

interpretability, computational demands, and ethical/privacy concerns. To realize 

the full potential of AI‑driven genomics, future work must combine technical 

innovation (XAI, federated learning, multi‑omics integration) with rigorous 

validation, inclusive datasets, and responsible ethical frameworks. 

Overall, AI stands as a cornerstone technology for the future of genomics — but 

realizing its promise for human health requires careful, multidisciplinary, and 

ethically grounded efforts. 
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