
ARTIFICIAL INTELLIGENCE-BASED MANAGEMENT OF PATIENT FLOW AND REDUCTION OF INFECTIOUS DISEASE RISKS

Isroilov Ulugbek Begali ogli

Assistant, Department of Biomedical Engineering, Informatics and Biophysics,
Tashkent State Medical University, Tashkent, Uzbekistan

Mamadaliyeva Mohlaroyim

First-Year Student, Group 114-B,

Faculty of General Medicine No. 1,

Tashkent State Medical University, Tashkent, Uzbekistan

Abstract

This article highlights the significance of Artificial Intelligence (AI) technologies in managing patient flow and mitigating the risk of infectious diseases within healthcare institutions. AI algorithms enhance the quality of medical services by predicting patient arrival flow, optimizing queues, automating real-time triage processes, and balancing departmental workloads. Furthermore, the article examines the possibilities of using AI for early detection of infectious diseases, isolating high-risk patients, contact tracing, modeling the probability of infection spread, and automating disinfection processes. The advantages of AI, its technical foundations, and the limitations encountered during its implementation are analyzed. Research findings indicate that the effective application of artificial intelligence in medical facilities serves to regulate patient flow and significantly reduce the transmission of infections.

Keywords: Artificial Intelligence (AI), Patient Flow Management, Infectious Diseases, Virtual Queuing, Triage System, COVID-19, Queue Optimization, Infection Control and Safety.

Modern American Journal of Medical and Health Sciences

ISSN (E): 3067-803X

Volume 2, Issue 1, January 2026

Website: usajournals.org

This work is Licensed under CC BY 4.0 a Creative Commons Attribution 4.0 International License.

Introduction

The current global healthcare landscape, on the one hand, offers unprecedented opportunities driven by technological advancements, while on the other hand, it faces serious challenges caused by rapidly growing population demands, limited resources, and persistent threats posed by infectious disease outbreaks, particularly pandemics such as COVID-19. Effective management of patient flow in healthcare institutions is not merely a matter of convenience; it is a vital necessity that directly determines the quality, safety, and accessibility of medical services. Long waiting times, inefficient allocation of resources, and the spread of hospital-acquired infections (nosocomial infections) remain major global challenges. In this context, Artificial Intelligence (AI) has emerged as a key solution capable of driving revolutionary changes in the healthcare sector. AI not only surpasses human capabilities in data analysis but also enables real-time decision-making, optimization of complex systems, and proactive identification of potential risks. The application of AI algorithms provides hospitals and clinics with strategic opportunities to significantly optimize their operations, improve patients' access to medical care, and, most importantly, control and reduce the risks of infectious diseases. The following sections analyze the specific roles and effectiveness of AI in addressing these two critical areas.

Main Body

The Role of Artificial Intelligence in Patient Flow Management Effective patient flow management is a key factor in maximizing the utilization of hospital resources and reducing patient waiting times. In this process, Artificial Intelligence performs several critical functions:

1. Demand Forecasting

AI algorithms analyze historical data, seasonal variations, local disease prevalence trends, and even weather-related information to accurately predict future patient arrivals.

Advantages: This enables hospitals to optimize staff scheduling, ensure adequate availability of essential medical equipment (such as ventilators), and prepare sufficient bed capacity in advance.

Modern American Journal of Medical and Health Sciences

ISSN (E): 3067-803X

Volume 2, Issue 1, January 2026

Website: usajournals.org

This work is Licensed under CC BY 4.0 a Creative Commons Attribution 4.0 International License.

2. Queue Optimization

AI-based systems automatically determine the most appropriate appointment times by considering patients' clinical condition (triage level), the type of medical examination required, and specialist availability.

Virtual Queuing: Patients can register remotely and arrive at their scheduled time, significantly reducing congestion in waiting areas.

3. Resource Simulation and Allocation

AI can simulate various in-hospital scenarios, such as increased patient inflow to emergency departments during influenza outbreaks.

Advantages: These simulations assist hospital administrators in evaluating how specific changes—such as hiring additional nursing staff or opening new operating rooms—may affect overall patient flow and system efficiency.

Reducing the Risk of Infectious Diseases. Controlling the spread of infectious diseases, particularly during pandemics such as COVID-19, represents another critical application of Artificial Intelligence in healthcare systems.

Diagnostic Analysis Process of COVID-19 Using Artificial Intelligence

Modern American Journal of Medical and Health Sciences

ISSN (E): 3067-803X

Volume 2, Issue 1, January 2026

Website: usajournals.org

This work is Licensed under CC BY 4.0 a Creative Commons Attribution 4.0 International License.

1. Early Warning Systems

AI can analyze natural language data sources—such as social media content, news reports, and electronic health records—to detect unusual clusters of symptoms or the potential spread of infectious diseases within a population at a very early stage.

Advantages: This enables public health authorities to take timely preventive measures before a serious outbreak or epidemic emerges.

2. Modeling the Probability of Disease Transmission

AI is used to model the rate of disease spread and the probable pathways of infection transmission both within and outside hospital settings.

Optimization: Such modeling assists hospitals in determining the optimal placement of isolation wards, as well as identifying when and in what quantities personal protective equipment (such as medical masks) should be utilized.

3. Efficient Patient Triage (AI-Powered Triage)

AI-driven systems automate temperature screening and symptom analysis to support effective patient triage.

Objective: The primary goal is to immediately identify patients with a high risk of infectious disease and separate them from other patients and healthcare personnel. These individuals can then be directed through dedicated pathways to specialized isolation units, thereby minimizing the risk of infection for non-infected patients and healthcare staff.

Conclusion

In conclusion, Artificial Intelligence (AI) is not merely a technological innovation but a strategic tool for addressing some of the most pressing challenges in modern healthcare delivery. The role of AI in medicine extends far beyond the automation of administrative tasks; it offers the potential to fundamentally restructure the entire hospital ecosystem.

Efficiency and Resource Optimization: By enabling accurate forecasting of patient flow, AI allows hospitals to prevent departmental overcrowding, optimize

Modern American Journal of Medical and Health Sciences

ISSN (E): 3067-803X

Volume 2, Issue 1, January 2026

Website: usajournals.org

This work is Licensed under CC BY 4.0 a Creative Commons Attribution 4.0 International License.

bed utilization, and ensure the effective allocation of healthcare personnel. This leads to reduced operational costs and maximized use of available resources.

Infection Control and Safety: One of the most significant contributions of AI lies in its ability to substantially reduce the risks associated with infectious diseases. Through early warning systems, transmission modeling, and automated triage processes, the chain of hospital-acquired (nosocomial) infections can be effectively disrupted. This not only protects the lives of patients and healthcare workers but also enhances the resilience of healthcare systems against global pandemics.

Human-Centered Care and Convenience: Most importantly, AI enables a shift toward patient-centered healthcare delivery. Reduced waiting times, faster diagnosis, and precisely managed isolation protocols help decrease patient stress levels and improve overall satisfaction with medical services.

By implementing AI-based solutions, healthcare institutions can achieve safer, faster, more equitable, and more humane service delivery. In the future, an effective healthcare system will be defined as one that is continuously optimized and supported by Artificial Intelligence. Therefore, investing in AI is not merely an investment in technology, but a crucial investment in public health and safety.

References

1. World Health Organization. *Managing epidemics: Key facts about major deadly diseases*. WHO Press, Geneva, 2018.
2. World Health Organization. *Digital health and artificial intelligence for health*. WHO, 2021.
3. Topol, E. J. *Deep Medicine: How Artificial Intelligence Can Make Healthcare Human Again*. Basic Books, New York, 2019.
4. Esteva, A., Robicquet, A., Ramsundar, B., et al. "A guide to deep learning in healthcare." *Nature Medicine*, vol. 25, no. 1, pp. 24–29, 2019.
5. Улугбек, И. Б., & Дильрабо, А. У. (2025). Искусственный интеллект в ранней диагностике онкологических заболеваний. *Multidisciplinary Journal of Science and Technology*, 5(5), 993-997.

Modern American Journal of Medical and Health Sciences

ISSN (E): 3067-803X

Volume 2, Issue 1, January 2026

Website: usajournals.org

This work is Licensed under CC BY 4.0 a Creative Commons Attribution 4.0 International License.

6. Begali о‘г, I. U. B., Malikovich, E. S., & Xoziakbar о‘г‘li, U. X. (2025). 3D PRINTER ORQALI ISHLAB CHIQARILGAN PROTEZ VA IMPLANTLARNING TIBBIYOTDA QO’LLANILISHI. *Multidisciplinary Journal of Science and Technology*, 5(5), 857-862.
7. Begali о‘г, I. U. B. (2025). Shaxsiylashtirilgan tibbiyot (Personalized medicine). *Multidisciplinary Journal of Science and Technology*, 5(5), 682-688.
8. Begali о‘г, I. U. B., Malikovich, E. S., & Ahrorxonov, A. (2025). Tibbiyotda robototexnika: Jarrohlik sohasida qo‘llanishi. *Multidisciplinary Journal of Science and Technology*, 5(5), 878-884.
9. Begali о‘г, I. U. B., Malikovich, E. S., & Olimov, A. (2025). Bolalar tibbiyotida VR o‘yinlari. *Multidisciplinary Journal of Science and Technology*, 5(5), 714-721.
10. Begali о‘г, I. U. B., & Shuhratovna, S. D. (2025). Diabetiklar uchun mobil ilovalar va ularning samaradorligi. *Multidisciplinary Journal of Science and Technology*, 5(5), 710-713.
11. Begali о‘г, I. U. B., & Mukarram, A. (2025). Kasalliklarning geografik tarqalishi xaritalari (GIS texnologiyalari). *Multidisciplinary Journal of Science and Technology*, 5(5), 644-648.
12. Begali о‘г, I. U. B., & Shodmonovna, X. A. (2025). COVID-19 DAVRIDA TELEMEDITSINANING ORNI. *Multidisciplinary Journal of Science and Technology*, 5(5), 698-702.
13. Begali о‘г, I. U. B., & Mohinur, M. (2025). Da Vinci roboti va jarrohlik amaliyotlari. *Multidisciplinary Journal of Science and Technology*, 5(5), 649-653.
14. Begali о‘г, I. U. B., & Bahromov, H. (2025). Nanorobotlar orqali qon tomirlarini tozalash. *Multidisciplinary Journal of Science and Technology*, 5(5), 657-662.
15. Begali о‘г, I. U. B. (2025). The Importance of Integration in General Education Schools and Theoretical Foundations for Developing Teaching-

Modern American Journal of Medical and Health Sciences

ISSN (E): 3067-803X

Volume 2, Issue 1, January 2026

Website: usajournals.org

This work is Licensed under CC BY 4.0 a Creative Commons Attribution 4.0 International License.

Oriented Integrative Software. *Multidisciplinary Journal of Science and Technology*, 5(4), 641-646.

16. Isroilov, U. B. (2023). Automatic Determination of Blood Glucose Level by Means of A Non-invasive Glucometer. *American Journal of Technology and Applied Sciences*, 12, 78-84.
17. O'G'Li, U. B. B., & Egamov, S. M. (2025). The impact of artificial intelligence on modern education. *Science and Education*, 6(10), 341-348.
18. O'G'Li, U. B. B., & Egamov, S. M. (2025). The advantages and challenges of information technologies in distance education. *Science and Education*, 6(10), 349-356.
19. Jiang, F., Jiang, Y., Zhi, H., et al. "Artificial intelligence in healthcare: Past, present and future." *Stroke and Vascular Neurology*, vol. 2, no. 4, pp. 230–243, 2017.
20. McCall, B. "COVID-19 and artificial intelligence: Protecting health-care workers and curbing the spread." *The Lancet Digital Health*, vol. 2, no. 4, pp. e166–e167, 2020.
21. Ministry of Health of the Republic of Uzbekistan. Digitalization of Healthcare System in Uzbekistan. Tashkent, 2020.
22. Decree of the President of the Republic of Uzbekistan No. PF-6079. On Approval of the "Digital Uzbekistan – 2030" Strategy, Tashkent, 2020.
23. Decree of the President of the Republic of Uzbekistan No. PF-5590. On Comprehensive Measures to Improve the Healthcare System of the Republic of Uzbekistan, Tashkent, 2018.
24. Ministry of Health of the Republic of Uzbekistan. Guidelines on Prevention and Control of Infectious Diseases. Tashkent, 2021.
25. Tashkent State Medical University. Scientific Research in Biomedical Engineering and Medical Informatics. Tashkent, 2022.
26. Isroilov U. B., et al. "Application of Digital Technologies in Healthcare Management." *Journal of Medical Education and Innovation of Uzbekistan*, no. 2, pp. 45–50, 2023.