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Abstract

The infused work is devoted to the impact of harmonic waves on spatial
cylindrical shell. The main goal is to develop a theoretical basis and generalize
the mathematical model for assessing dynamic behavior of cylindrical shells,
which are in interaction with deformable medium under wave effects. The
research uses methods of mathematical physics equations. The practical value of
the work is to develop the methodology and algorithm for calculation (dynamic
stress-strain state) and optimize dynamic properties of the mechanical system as
a whole.

Keywords: Harmonic waves, cylindrical shell, diffraction, stress — strain state,
voltage.

Introduction

At present, there exist a number of problems related to the dynamics of dissipative
systems in an unbounded elastic medium, the solution of which makes it possible
to reveal new patterns of oscillations and wave diffraction. Issues of diffraction
theory of seismic waves, formulated as boundary-value problems of continuum
mechanics, have been considered in many works [1,2,3] and applied to the
analysis of underground structures.

For practical solution of such problems, a number of assumptions are introduced.
In particular, when analyzing a pipeline in the transverse direction, the problem
is reduced to a plane problem for a stationary wave. Further simplifications
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involve reducing the diffraction problem to a quasi-static one, i.e., to an ordinary
static problem with external boundary conditions that take into account seismic
effects in the form of a constant coefficient. For example, in [4,5] a solution was
obtained for estimating contact seismic pressures on a reinforced cavity under the
action of a plane stationary seismic wave. In this case, the deformations of the
seismic wave upon encountering a cavity are not taken into account.

This method was extended to transportation tunnels in [6,7] for the plane

containing a reinforced ring, where the external boundary conditions (at infinity)
were adopted according to the formula for engineering seismic pressure. The
solution obtained in [6] showed that the intensity of contact pressures (seismic
pressure on the tunnel) largely depends on the stiffness ratio of the surrounding
rock and the lining, as well as on the geometry of the lining itself. In [8] it was
noted that the solutions obtained in [9] are valid for the case of relatively deep
tunnel embedment. The same considerations are also highlighted in [10,11].

In the present work, the problem of wave incidence on a spatial shell is
investigated.

2. Problem Statement
This problem is considered in a cylindrical coordinate system 7,6,z. The
medium, the layer, and the shell are assumed to be homogeneous and isotropic.
The displacements at the interface between the medium and the shell take the
following form:
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The corresponding stresses at the interface with the shell are expressed as follows:

UfPZ — —M-sin@z . -Hn(z)/ (al r) +L-cosy, '(Ql -H,EZ)/ (Q1’”)+H;§2) (er))
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Boundary conditions at the layer—-medium interface:”
at r=r,;
Uy =U. 50,1 = 0,05 Ug =Uggs

=0

rz0*

G}’Hl = Gr@O 9 uzl = uz(); Grzl

Boundary conditions for the shell with a layer:

at r=rn;
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We obtain a complex algebraic system.
[C](4,B,C.D,E,F,M,L,K)" =[p]

3. Results and analysis
By solving the algebraic system, we obtain A, B,C,D,E,F,M,L,K and determine
the hoop (circumferential) and axial forces of the shell.
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Fig. 1. Hoop (circumferential) stresses of the cylindrical layer: medium — soft soil, shell —
steel, at 60°, Q=1.4, G,,=13.87; at 45°, Q=2,G,,=6.64; at 30° ,Q2=0.1,G,, =3.39
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Fig. 2. Radial stresses of the cylindrical layer: medium — soft soil, shell — steel,
at 60°,Q=1.2, G,=10.43; at 45° ,Q=1.5, G, =11.14; at 30* Q=1.4,G.,=9.19
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Fig. 3. Tangential stresses of the cylindrical layer: medium — soft soil; shell —
steel, at 60°, Q=1.3, G_=5.82; at 45°,Q=1.6, G, =4.75; at 30°, Q=1.9,G,,
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When a viscoelastic layer is considered, with the medium and the shell being
elastic, we take a three-parameter kernel as the relaxation kernel:
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with the parameters:
A, =0.048; 8 =0.05;a =0.1;

A =0.078; 4 =0.05; = 0.1 — high viscosity.
In the case of solving the stationary problem, cosine and sine forms are used for
the kernel:

I' ()= (02;];(;)2)1 —cos(aarctg %),
I (w)= (a)Z:ZC—(;)Z)l = sin(aarctg %)

where I'(w) 1s the gamma function and @is the real frequency.

100.1) =10.1+1D)/0.1=I(1.1)/0.1, I'(1.1) =in {n =0} = 0.9514

I(1.1) =npu {n =1} = 0.9509, E=E,(1-1"“(w)-il"(w)) taking viscosity into
account.

The results of force calculations in the shell (spatial problem), embedded in a
viscoelastic medium and interacting with seismic waves incident on a cylindrical
layer and the shell, under the action of longitudinal (or transverse) waves, are
presented in Figures 1-3. The figures show that the maximum force factors in the
shell appear in the low-frequency range under the action of transverse waves.
Thus, we carried out a three-dimensional analysis of cylindrical shells (pipelines)
subjected to seismic wave action. At low frequencies, expressions were obtained
for estimating the amplitude of stresses in deeply buried pipelines for a given
wavelength Q=wR/C,. It is shown that the induced maximum stresses are
governed by the direction of incident waves and, primarily, by the elastic moduli
of the medium and the cylinder. In the design of underground structures, the
importance of considering spatial factors was established. In addition, the
frequency response function (FRF) of the shell (ring loads Ay) was studied for a

concrete shell in soft soil (9 = %,90 =90°) under the action of longitudinal waves.
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Conclusion

To describe the dissipative properties of the system as a whole, the concept of a
“global damping coefficient” is introduced. In the case of a structurally
homogeneous mechanical system, the global damping coefficient is entirely
determined by the imaginary part of the first (by modulus) complex phase
velocity. In the case of a structurally non-homogeneous mechanical system, the
imaginary parts of both the first and the second natural frequencies serve as the
global damping coefticient, depending on the values of the geometric parameters.
It has been established that the optimal damping of oscillations in non-
homogeneous systems occurs when the real parts of the phase velocities of
different modes are close (or converge), and the corresponding imaginary parts of
these phase velocities intersect at this point (or become equal). In this case, both
vibration modes of the mechanical system provide the same energy dissipation.
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