

Modern American Journal of Engineering,

Technology, and Innovation
ISSN(E): 3067-7939

Volume 01, Issue 02, May, 2025

Website: usajournals.org
This work is Licensed under CC BY 4.0 a Creative Commons Attribution
4.0 International License.

__

259 | P a g e

MAZE ALGORITHM: IS IT SOLVABLE?
Zayniyev Sanjar Azmiddin ogli

Computer and Software Engineering Student at Inha University in Tashkent,

Software Test Automation Engineer at The Adtech

Abstract:

This article presents a solution to the classic maze traversal problem, where the

objective is to determine whether a valid path exists from a designated starting

point ('S') to an exit point ('E') in a grid-based maze. The maze is composed of

open paths ('.'), walls ('#'), a start, and an exit, with movement restricted to

horizontal and vertical directions. The solution implements the Depth-First

Search (DFS) algorithm to explore the maze and identify whether a path from the

start to the exit exists, while avoiding revisits and obstacles. Key operations

include maze input handling, algorithm initialization, execution, and result

output. The implementation employs essential data structures such as a 2D array

for maze representation, a stack for DFS traversal, and a boolean array to track

visited cells. The article discusses the design decisions behind these structures,

outlines the algorithm's limitations, and explores potential future enhancements.

This work highlights the importance of algorithmic problem-solving and data

structure selection in pathfinding applications.

Keywords: Maze Solving, Depth-First Search (DFS), Pathfinding Algorithm,

Java Programming, Data Structures, Stack, Grid Traversal, Algorithmic Problem

Solving, Search Algorithms, Optimal Pathfinding, 2D Maze Representation.

Introduction

We are given a maze represented as a grid, where each cell can be one of the

following:

● ‘S’: Starting point (entrance).

● ‘E’: Exiting point (destination).

● ‘.’: Open path, representing a passable cell.

● ‘#’: Wall or obstacle, representing an impassable cell.

Modern American Journal of Engineering,

Technology, and Innovation
ISSN(E): 3067-7939

Volume 01, Issue 02, May, 2025

Website: usajournals.org
This work is Licensed under CC BY 4.0 a Creative Commons Attribution
4.0 International License.

__

260 | P a g e

Our task is to determine whether there exists a valid path from the start to the exit

within the maze. A valid path must obey the following rules:

1. We can only move horizontally or vertically (no diagonal movements).

2. We cannot pass through walls (‘#’).

3. We must navigate from the start (‘S’) to the exit (‘E’).

The problem is considered solved if a valid path from start to exit exists,

otherwise, it is unsolvable.

Example (Consider the following maze)

S . . # #

. # . . #

. # # . #

. . . # .

. E

In this maze, ‘S’ represents the start, ‘E’ represents the exit, ‘.’ represents an open

path, and ‘#’ represents a wall. The question is whether there is a valid path from

‘S’ to ‘E’ in the maze.

Objective

Implement an algorithm, such as Depth-First Search (DFS), to determine if a

valid path exists in the given maze from the start to the exit.

Operations included in the application

1. Input Maze: Accepting or loading the maze data, which represents the

layout of the maze, including the start, exit, open path and walls.

2. Initialize Algorithm: Choosing and initializing the maze-solving

algorithm, such as Depth-First Search (DFS).

3. Maze Solving: Executing the selected algorithm to determine whether a

valid path exists from the start to the exit in the maze.

Modern American Journal of Engineering,

Technology, and Innovation
ISSN(E): 3067-7939

Volume 01, Issue 02, May, 2025

Website: usajournals.org
This work is Licensed under CC BY 4.0 a Creative Commons Attribution
4.0 International License.

__

261 | P a g e

4. Output Result: Displaying the result of the maze-solving algorithm,

indicating whether the maze is solvable or not.

Choice of Data Structures

1. 2D array:

● Purpose: Represents the maze layout.

● Usage: Each cell in the array corresponds to a location in the maze and

contains information about whether it is an open path, wall, the start or the exit.

2. Stack (for DFS):

● Purpose: Used in Depth-First Search (DFS) algorithm.

● Usage: Keeps track of cells to be explored, DFS typically uses a recursive

approach, but an explicit stack can be used to implement an iterative solution.

3. Hashset or boolean[][] (to track the visited cells)

● Purpose: Used to prevent revisiting the same cell.

● Usage: Marks cells as visited to avoid infinite loops and unnecessary

exploration. A ‘Hashset’ is useful when the maze can have any dimensions, while

a ‘boolean[][]’ array is suitable for fixed-size mazes.

4. Array List:

● Purpose: Used to store valid neighbors

● Usage: Gets possible neighbors to visit to know before knowing whether

there will continue passing, stores 1D array type of integer (int[]).

Modern American Journal of Engineering,

Technology, and Innovation
ISSN(E): 3067-7939

Volume 01, Issue 02, May, 2025

Website: usajournals.org
This work is Licensed under CC BY 4.0 a Creative Commons Attribution
4.0 International License.

__

262 | P a g e

Code (Implementation in Java)

I pushed my code to GitHub as well. You can find the link in the references section

of this article.

Modern American Journal of Engineering,

Technology, and Innovation
ISSN(E): 3067-7939

Volume 01, Issue 02, May, 2025

Website: usajournals.org
This work is Licensed under CC BY 4.0 a Creative Commons Attribution
4.0 International License.

__

263 | P a g e

Limitations:

1. Completeness: DFS algorithm can fail to find a solution if the maze is infinite

or very large. In practical scenarios, limitations on memory and processing power

can affect the completeness of the algorithm.

2. Optimality: The implemented algorithm (DFS) focuses on finding any valid

path from the start to the exit. They do not necessarily find the shortest path. If

finding the optimal path is crucial, more advanced algorithms like Dijkstra’s may

be considered.

3. Memory Usage: The algorithms use additional memory to store data structures

(stack or queue) and to track visited cells. For very large mazes, memory usage

can become a limitation.

4. Grid Representations: The implementation assumes a 2D grid representation

of the maze. If the maze has a more complex structure or is represented

differently, the algorithm may need modifications.

Future Scope:

1. Optimizing for Memory and Performance: Future improvements can focus

on optimizing memory usage and performance. This might involve tweaking data

structures, implementing pruning strategies or considering parallelization.

2. Shortest Path Algorithms: If finding the shortest path is a requirement,

consider implementing algorithms like Djikstra’s or A*(A-star). These algorithms

take into account the cost of reaching each cell and aim for the most efficient

path.

3. Dynamic Mazes: Extend the algorithm to handle dynamic mazes where the

maze structure can change over time. This could involve real-time updates or

modifications during pathfinding.

4. Visualizations and User Interaction: Enhance the application by adding

visualizations to help users understand how the algorithm explores the maze. We

will consider adding user interaction features, allowing users to interact with the

maze dynamically.

5. Multiple Paths: We need to modify the algorithm to find multiple paths

from the start to the exit, if they exit. This could involve extending the solution

to consider alternative routes.

Modern American Journal of Engineering,

Technology, and Innovation
ISSN(E): 3067-7939

Volume 01, Issue 02, May, 2025

Website: usajournals.org
This work is Licensed under CC BY 4.0 a Creative Commons Attribution
4.0 International License.

__

264 | P a g e

6. Handling 3D or Multi-agent Mazes: We can extend the algorithm to handle

3D mazes or mazes with multiple agents, introducing new challenges and

opportunities for optimization.

Subject Importance

Pathfinding in Various Fields: Maze-solving algorithms play a crucial role in

pathfinding applications across diverse industries. From guiding autonomous

robots through physical environments to optimizing routing systems in logistics,

these algorithms offer efficient solutions for navigating intricate mazes.

Application in Games: In the gaming industry, maze-solving algorithms serve

as the backbone for creating captivating and challenging game scenarios. Game

developers leverage these algorithms to design intricate mazes, adding depth and

complexity to gameplay and enhancing the overall gaming experience.

Routing and Navigating systems: Maze-solving algorithms are fundamental to

the development and optimization of routing and navigation systems. Whether in

GPS applications or virtual map services, these algorithms enable efficient and

reliable route planning, contributing to seamless navigation experiences for users

in both physical and digital spaces.

Educational Significance: Maze-solving algorithms hold educational

importance as practical examples for teaching fundamental concepts in computer

science and algorithms. Their visibility and applicability make them valuable

tools for students and educators alike, fostering a deeper understanding of

algorithmic principles.

Real-World Impact: Maze-solving algorithms, once confined to theoretical

realms, have now evolved into indispensable tools with tangible real-world

impact. Their practical significance extends across diverse domains,

revolutioning navigation, automation, and problem-solving methodologies.

Modern American Journal of Engineering,

Technology, and Innovation
ISSN(E): 3067-7939

Volume 01, Issue 02, May, 2025

Website: usajournals.org
This work is Licensed under CC BY 4.0 a Creative Commons Attribution
4.0 International License.

__

265 | P a g e

References

1. Stack overflow discussion on maze path searching using dfs. July, 2017.

2. Beauldung tutorial on maze problem implementation using java. January,

2024.

3. Source code of this algorithm, Github. May, 2025.

https://stackoverflow.com/questions/33847859/maze-path-searching-dfs-java
https://www.baeldung.com/java-solve-maze
https://github.com/sanjarzayniev/Maze-Algorithm

