
 

Modern American Journal of Engineering, 

Technology, and Innovation 
ISSN(E): 3067-7939 

Volume 01, Issue 02, May, 2025 

Website: usajournals.org 
This work is Licensed under CC BY 4.0 a Creative Commons Attribution 
4.0 International License. 

__________________________________________________________________________________ 

266 | P a g e  
 

     MICROSERVICE ARCHITECTURE VS 

MONOLITHIC: AN ANALYSIS IN DEVELOPING 

SCALABLE SOLUTIONS 
Azizyan L.V. 

Senior Software Engineer at ADP, Los Angeles, CA, USA

 
Abstract:  

With today's digital systems growing bigger and reaching more people, how 

software is structured has become really important for keeping things running 

smoothly over time. This paper looks at the differences between building software 

as one big piece (monolithic) versus breaking it down into smaller, independent 

services (microservices). We're focusing on how these choices affect whether the 

system can handle more users, how easy it is to update and fix, and the ways you 

can put new versions into action. By looking at actual examples and sharing 

practical lessons, we show how each method fits different company needs as they 

grow. The goal of this study is to help people make smart choices by looking at 

the give-and-take in speed, reliability, and how quickly development teams can 

move in different business and tech situations.  

 

Introduction:  

The fundamental design of a software system profoundly influences its ability to 

grow, adapt, and perform effectively over the long haul. In today's world of 

software creation, two main ways of structuring applications constantly come up: 

the all-in-one approach (monolithic) and the build-it-in-pieces approach 

(microservices). Each has its own distinct way of organizing, deploying, and 

keeping applications running. 

The monolithic way, where everything from the user interface to the core logic 

and data handling is packed into a single unit, used to be the standard. It can make 

getting started and deploying simpler, but as an application gets bigger, it can 

become harder to handle more users or keep things organized. On the flip side, 

microservices break an application down into independent, less connected parts. 



 

Modern American Journal of Engineering, 

Technology, and Innovation 
ISSN(E): 3067-7939 

Volume 01, Issue 02, May, 2025 

Website: usajournals.org 
This work is Licensed under CC BY 4.0 a Creative Commons Attribution 
4.0 International License. 

__________________________________________________________________________________ 

267 | P a g e  
 

This can make updates faster and allow the system to handle more load, but it 

also means dealing with new complexities in how these parts talk to each other, 

how you keep track of everything, and how you make sure it all stays reliable. 

This paper takes a close look at both of these architectural styles, comparing their 

technical pluses and minuses, their strong points, and where they might not work 

as well in practice. By looking at both the theories behind them and how they're 

used in real companies, we explore how different organizations match their 

architectural choices with what they're trying to achieve in their business, how 

quickly they need to move, and what their systems need to handle. As noted by 

Dragoni and colleagues back in 2017, more and more people are leaning towards 

microservices because they're good at dealing with the need to grow and stay 

manageable when things in the business world keep changing. [1] 

This study brings a fresh perspective by examining software architecture through 

both technical and organizational lenses. Rather than isolating performance or 

scalability as standalone metrics, it connects architectural decisions to real-world 

outcomes, like release agility, team workflows, and system upkeep over time. 

While many discussions separate theory from practice, this paper blends 

foundational concepts with how companies actually build and manage systems 

today. It offers developers and decision-makers a grounded, comprehensive 

resource for shaping long-term architectural strategies. Additionally, it reflects 

how modern practices such as cloud-native development and DevOps influence 

the criteria for scalable solutions, offering updated insights tailored to today’s 

fast-moving tech landscape. 

 

Theoretical Framework 

The architecture of a software system shapes how well it handles growth, change, 

and maintenance. Two main models dominate this space: monolithic and 

microservices. A monolithic design bundles all components—UI, logic, and data 

handling—into one deployable unit. It’s simpler to set up early on and easier to 

manage as a single codebase. In contrast, microservices break the system into 

smaller, independent parts, each handling a focused task. This approach, 

influenced by distributed systems theory, supports modularity and scalability but 

introduces challenges in coordination and consistency. Choosing between the two 



 

Modern American Journal of Engineering, 

Technology, and Innovation 
ISSN(E): 3067-7939 

Volume 01, Issue 02, May, 2025 

Website: usajournals.org 
This work is Licensed under CC BY 4.0 a Creative Commons Attribution 
4.0 International License. 

__________________________________________________________________________________ 

268 | P a g e  
 

requires understanding trade-offs in complexity, flexibility, and long-term 

operations. These principles form the base of our comparative analysis. 

 

Methodology 

To explore how monolithic and microservice architectures perform in real-world 

software development, this study takes a comparative approach grounded in both 

theory and practice. It brings together insights from scholarly publications, 

industry case reports, and firsthand accounts of implementation to evaluate how 

each architectural model responds to common development demands. The 

comparison focuses on several core dimensions: scalability, deployment 

complexity, maintainability, team collaboration, and system stability. These 

factors were chosen due to their relevance in modern development practices, 

especially within cloud-native and DevOps-driven environments. Real-life 

examples from companies across various sectors and sizes were selected to show 

how architectural choices are shaped by technical and business needs. By 

combining conceptual analysis with practical examples, this methodology 

ensures a balanced and meaningful assessment of both architectural styles in 

today’s fast-evolving development landscape. 

 

Studies with Analysis and Example Calculations 

Netflix: Scaling with Microservices  

Netflix stands out as a prime example of a company that successfully transitioned 

to a microservices architecture [2]. To support its vast global audience, Netflix 

moved away from a single, monolithic system and instead built a platform 

composed of hundreds of small, autonomous services [3], [4]. Each service is 

responsible for a specific function, such as recommending content or adjusting 

streaming quality. This architectural shift enabled Netflix to scale effectively and 

isolate faults, meaning a failure in one service wouldn’t disrupt the entire 

platform. Thanks to this change, Netflix can now deploy numerous updates daily, 

a significant improvement over their previous approach where updates were 

rolled out weekly or monthly. 

 

 



 

Modern American Journal of Engineering, 

Technology, and Innovation 
ISSN(E): 3067-7939 

Volume 01, Issue 02, May, 2025 

Website: usajournals.org 
This work is Licensed under CC BY 4.0 a Creative Commons Attribution 
4.0 International License. 

__________________________________________________________________________________ 

269 | P a g e  
 

Key benefits of this shift include: 

- Accelerated release cycles, with frequent updates replacing slower, 

bundled deployments. 

- Enhanced system stability through fault isolation, preventing cascading 

failures. 

- Increased team autonomy, allowing distributed groups to develop and 

maintain services independently.  

 

Example Calculation  

In the traditional monolithic architecture, deploying the entire system was a 

significant operation, often taking approximately four hours per week and 

requiring comprehensive testing of the entire application. In contrast, the 

microservices approach adopted by Netflix involves deploying numerous smaller, 

independent services, each taking roughly 10 minutes to deploy. Netflix 

reportedly releases around 50 such deployments daily. When aggregated, this 

amounts to: 

 

50 services × 10 minutes per service × 7 days per week = 3,500 minutes per week, 

or nearly 60 hours. 

 

While this may appear to increase deployment time overall, the critical distinction 

lies in the independence of each deployment. Unlike monolithic systems, where 

the entire application must be taken offline, microservices enable continuous 

deployment of individual components without impacting system-wide 

availability. This facilitates more frequent and rapid delivery of new features and 

fixes, significantly enhancing operational agility and minimizing downtime.  

 

Etsy: Balancing Monolith and Microservices 

Etsy’s approach illustrates a careful balance between traditional and modern 

software architecture. Initially, the platform operated as a single, unified 

codebase, which functioned adequately during early growth phases. However, as 

user demand increased and new features were introduced, this monolithic 

structure began to hinder performance and scalability. To address these 



 

Modern American Journal of Engineering, 

Technology, and Innovation 
ISSN(E): 3067-7939 

Volume 01, Issue 02, May, 2025 

Website: usajournals.org 
This work is Licensed under CC BY 4.0 a Creative Commons Attribution 
4.0 International License. 

__________________________________________________________________________________ 

270 | P a g e  
 

challenges, Etsy gradually transitioned key components, such as payment 

processing and search functionalities, into independent microservices. This 

hybrid strategy preserved the core business logic within a monolithic framework 

to maintain simplicity, while isolating high-traffic, mission-critical modules for 

enhanced scalability and reliability. [5]  

 

This pragmatic approach yielded several benefits: 

- The system’s complexity remained manageable, reducing the risk of over-

engineering. 

- Critical components gained improved scalability and fault tolerance, 

minimizing the impact of individual failures. 

- Development cycles for essential features accelerated, allowing for faster 

iteration without the need for a full system overhaul. 

 

Twitter: Monolith to Microservices Evolution  

In its initial phase, Twitter operated on a monolithic architecture developed with 

Ruby on Rails. As user traffic increased dramatically, this structure revealed 

significant scalability limitations. To address these challenges, Twitter 

transitioned to a microservices model, gradually rewriting substantial portions of 

their platform using languages such as Scala and Java. This architectural 

evolution enabled more effective distribution of workload across multiple 

servers. Nevertheless, the transition demanded considerable investment in 

infrastructure upgrades and sophisticated monitoring solutions, alongside 

fostering close collaboration among development and operations teams. [6] 

 

Key outcomes from this transformation included: 

- Enhanced capacity to support a rapidly growing user base with improved 

system reliability. 

- Increased operational complexity and higher maintenance costs. 

- A critical reliance on advanced monitoring tools and a robust DevOps 

culture to ensure seamless coordination and performance of numerous 

discrete services. 

 



 

Modern American Journal of Engineering, 

Technology, and Innovation 
ISSN(E): 3067-7939 

Volume 01, Issue 02, May, 2025 

Website: usajournals.org 
This work is Licensed under CC BY 4.0 a Creative Commons Attribution 
4.0 International License. 

__________________________________________________________________________________ 

271 | P a g e  
 

(Pic. 1 Table). Economic Considerations in Choosing Between Monolithic and 

Microservice Architectures 

 
The financial implications of selecting either monolithic or microservice 

architectures extend well beyond technical preferences, significantly influencing 

an organization’s overall costs and economic performance. 

Monolithic architectures typically involve lower initial expenditures. Since the 

entire application is developed and deployed as a single unit, early-stage 

development is often more straightforward, with less complexity in integrating 

various components. This unified approach can reduce resource allocation in the 

beginning, simplifying project management and minimizing coordination 

overhead. 

Yet, as the application matures and expands, these initial savings can be 

overshadowed by escalating maintenance costs. Monolithic systems require 

redeployment of the entire application for even minor updates, increasing 

downtime risk and lengthening development cycles. The tight coupling of 

components can impede rapid innovation and complicate troubleshooting, 



 

Modern American Journal of Engineering, 

Technology, and Innovation 
ISSN(E): 3067-7939 

Volume 01, Issue 02, May, 2025 

Website: usajournals.org 
This work is Licensed under CC BY 4.0 a Creative Commons Attribution 
4.0 International License. 

__________________________________________________________________________________ 

272 | P a g e  
 

negatively affecting team productivity and, by extension, potential revenue 

streams. 

Conversely, microservices demand a higher upfront investment. Building and 

managing multiple autonomous services calls for sophisticated infrastructure, 

advanced monitoring solutions, and a strong commitment to DevOps culture 

throughout the organization. Despite these higher starting costs, microservices 

offer considerable long-term economic benefits. By enabling independent teams 

to develop, test, and deploy discrete services, organizations accelerate feature 

delivery and enhance responsiveness to evolving market demands. 

Additionally, microservices improve fault isolation, reducing the financial impact 

of system failures. Cloud-native microservice deployments can optimize resource 

utilization, helping to control operational expenses. However, this distributed 

architecture may increase costs related to service communication, data 

consistency, and orchestration complexity. 

Ultimately, the economic trade-offs associated with these architectural styles 

depend on factors such as company size, market environment, and growth 

objectives. While startups and smaller projects may benefit from the cost-

efficiency of monolithic designs initially, larger and rapidly scaling enterprises 

often justify the greater upfront investment in microservices through improved 

scalability, agility, and long-term cost savings. 

 



 

Modern American Journal of Engineering, 

Technology, and Innovation 
ISSN(E): 3067-7939 

Volume 01, Issue 02, May, 2025 

Website: usajournals.org 
This work is Licensed under CC BY 4.0 a Creative Commons Attribution 
4.0 International License. 

__________________________________________________________________________________ 

273 | P a g e  
 

 
(Pic. 2 Table). 

 

Conclusion 

Choosing between a monolithic or microservices architecture goes far beyond a 

simple engineering decision, it is a strategic move that deeply influences a 

system’s scalability, maintainability, cost structure, and long-term adaptability. 

When comparing both models, it becomes clear that neither approach is 

universally superior; each serves different needs depending on a project’s scale, 

pace of growth, and business objectives. 

Monolithic architectures, with their centralized structure, tend to offer a faster and 

more cost-effective route for early-stage projects. Their unified codebase 

simplifies deployment and coordination, which can be advantageous when 

resources are limited and time-to-market is critical. Yet, as systems evolve and 

the demand for new features increases, the tightly coupled nature of monoliths 

often creates roadblocks. Updates become riskier, development cycles slow 

down, and the burden of managing dependencies grows heavier. 

In contrast, microservices promote a distributed, modular approach that enables 

independent development and deployment. This architectural style encourages 

agility, faster iteration, and better fault isolation. However, its benefits come with 

increased operational overhead, from service orchestration to monitoring and 



 

Modern American Journal of Engineering, 

Technology, and Innovation 
ISSN(E): 3067-7939 

Volume 01, Issue 02, May, 2025 

Website: usajournals.org 
This work is Licensed under CC BY 4.0 a Creative Commons Attribution 
4.0 International License. 

__________________________________________________________________________________ 

274 | P a g e  
 

inter-service communication. Organizations embracing this path must invest in 

robust DevOps practices, scalable infrastructure, and collaborative team culture 

to fully leverage the model’s potential. 

In conclusion, the architectural choice should align with both immediate 

capabilities and future goals. Startups may find the simplicity of monoliths more 

practical, while larger, rapidly scaling enterprises are likely to gain more from the 

flexibility and resilience of microservices. What matters most is making an 

intentional, well-informed decision, one that positions the software not just for 

short-term functionality, but for sustained innovation and competitive strength in 

a dynamic digital landscape. 

 

References 

1 Nicola Dragoni, Saverio Giallorenzo, Alberto Lluch Lafuente, Manuel 

Mazzara, Fabrizio Montesi, Ruslan Mustafin, Larisa Safina. Microservices: 

Yesterday, Today, and Tomorrow. Present and Ulterior Software Engineering. 

Springer, 2017. URL: https://link.springer.com/chapter/10.1007/978-3-319-

67425-4_3  

2 Netflix Tech Blog. (2016). Migrating to Microservices at Netflix. URL: 

https://netflixtechblog.com/migrating-to-microservices-at-netflix-6706e0b7e172  

3 Newman, S. (2015). Building Microservices: Designing Fine-Grained Systems. 

O'Reilly Media.  

4 Wolff, E. (2016). Microservices: Flexible Software Architecture. Addison-

Wesley. 

5 Adams, A. (2017). Etsy’s journey from monolith to microservices. Etsy 

Engineering Blog. URL: https://codeascraft.com/2017/05/22/microservices-at-

etsy/  

6 Ghosh, S. (2012). Twitter's Journey from Ruby to Java & Scala to Handle 

Scalability. InfoQ. URL: https://www.infoq.com/news/2012/11/twitter-ruby-to-

java/   

https://link.springer.com/chapter/10.1007/978-3-319-67425-4_3
https://link.springer.com/chapter/10.1007/978-3-319-67425-4_3
https://netflixtechblog.com/migrating-to-microservices-at-netflix-6706e0b7e172
https://codeascraft.com/2017/05/22/microservices-at-etsy/
https://codeascraft.com/2017/05/22/microservices-at-etsy/
https://www.infoq.com/news/2012/11/twitter-ruby-to-java/
https://www.infoq.com/news/2012/11/twitter-ruby-to-java/

