
INNOVATIVE SOLUTIONS TO ENHANCE RELIABILITY OF OIL & GAS PIPELINES AND TECHNICAL SAFETY IN TRANSPORT SYSTEMS

Tarakhtieva Gulmira Kulbaevna,
PhD, Tashkent State Technical University

Abstract

This article examines innovative engineering, organizational, and digital solutions that improve reliability and technical safety in oil and gas pipeline transport systems. The study integrates 2020–2024 evidence on integrity management, in-line inspection (ILI) performance, predictive maintenance, leak detection, and cyber-physical security to quantify economic and safety impacts. A mixed-methods design combines statistical comparison, cost–benefit analysis, and risk-based models calibrated to operator-reported indicators (incidents per 1,000 km, corrosion anomaly density, mean time to failure). Results indicate that integrating probabilistic integrity assessment, fiber-optic distributed sensing, advanced ILI analytics, and risk-based operations yields measurable reductions in failure probability and life-cycle cost. Policy and management implications are discussed with alignment to API/ASME/ISO standards and international practice.

Introduction

Oil and gas pipeline networks are critical infrastructures that connect upstream extraction, midstream transport, and downstream markets. Reliability in this context is defined as the ability of the pipeline system to perform its intended function under stated conditions for a specified period of time. Technical safety is concerned with preventing loss of containment, catastrophic failures, and cascading effects on people, assets, and the environment. Between 2020 and 2024, operators accelerated digitalization and risk-based approaches to sustain availability while meeting stricter environmental expectations. Innovations span

Modern American Journal of Business, Economics, and Entrepreneurship

ISSN (E): 3067-7203

Volume 01, Issue 08, November, 2025

Website: usajournals.org

*This work is Licensed under CC BY 4.0 a Creative Commons
Attribution 4.0 International License.*

hardware (coated steels, composite sleeves, fiber-optic cables) and software (AI-assisted ILI analytics, digital twins, Bayesian risk models). The scientific novelty of this paper lies in an integrated framework that couples probabilistic integrity management with economic optimization at system level. The framework treats uncertainty explicitly and evaluates how incremental sensing and analytics change the optimal maintenance frontier. The research objective is to quantify the economic effectiveness and safety benefits of selected innovative solutions in pipeline transport. The paper also clarifies standard alignment, including API 1160, ASME B31.8, ISO 55000, and corrosion control practices such as NACE SP0502. We further assess comparative international practice to contextualize Uzbekistan's midstream modernization pathway.

Methodology

The study adopts a mixed-methods design that combines quantitative and qualitative evidence to evaluate reliability interventions. A system boundary was defined to include transmission pipelines, compressor and metering stations, and supervisory SCADA networks. Primary indicators comprise incidents per 1,000 km, corrosion anomaly density per km, and mean time to failure for critical components. Secondary indicators include leak detection time, false alarm rate, and integrity dig success ratio after ILI calls. We compiled operator-reported data and public benchmark statistics covering 2020–2024, harmonized to common definitions. Time-series preprocessing applied winsorization at the 1st and 99th percentiles to mitigate outliers from rare severe events. Stationarity was checked with augmented Dickey–Fuller tests before estimating autoregressive distributed lag models for trends. Treatment effects of innovations were estimated with difference-in-differences comparing early adopters and non-adopters. A cost–benefit model quantified capital expenditures, operating expenditures, avoided incident costs, and externalities. Monte Carlo simulation with 50,000 iterations propagated uncertainty in failure probability, costs, and detection sensitivity. A Bayesian network linked degradation mechanisms (external corrosion, SCC, third-party interference) to failure likelihood. Integrity growth models mapped ILI signal features to defect depth distributions using extreme value theory for tails. Risk matrices (frequency–consequence) were

Modern American Journal of Business, Economics, and Entrepreneurship

ISSN (E): 3067-7203

Volume 01, Issue 08, November, 2025

Website: usajournals.org

*This work is Licensed under CC BY 4.0 a Creative Commons
Attribution 4.0 International License.*

calibrated to company tolerability criteria and regulatory thresholds. Cyber-physical risk was modeled with attack trees connected to SCADA segmentation and zero-trust maturity scores. Digital twin fidelity was evaluated by cross-validating hydraulic model predictions against pressure and flow telemetry. Fiber-optic distributed acoustic and temperature sensing performance was quantified via ROC curves on labeled events. Predictive maintenance models used gradient boosting and random forests trained on vibration, pressure, and EFM data. Reliability block diagrams represented series-parallel configurations to compute system availability under interventions. Life-cycle costing applied a 10-year horizon with 8% real discount rate and conformance to ISO 15663 principles. Sensitivity analysis perturbed detection thresholds, corrosion growth rates, and pigging intervals to test robustness. Expert elicitation captured priors for rare events and validated scenario plausibility through Delphi rounds. Benchmarking aligned assessment criteria with API 1160 and ASME B31.8S integrity management guidance. All computations were executed in Python with reproducible notebooks archived for auditability. Ethical and safety considerations were respected by anonymizing operator identities and geo-coordinates. Limitations include partial observability of third-party damages and incomplete reporting in some years.

Results

Early adopters of advanced ILI analytics observed a 28–35% increase in true positive rate for actionable metal-loss calls. Leak detection time declined by a median of 42% after deploying fiber-optic DAS along high-consequence areas. False alarm rates dropped by 18% when multi-sensor fusion combined pressure-transient analysis with acoustic features. Mean time to failure for critical pump seals improved by 22% under predictive maintenance scheduling. Unplanned shutdown hours per 1,000 km decreased by 19% relative to 2020 baselines in digitally transformed segments. Incident frequency per 1,000 km fell from 0.36 to 0.27 on average where integrity dig programs followed data-driven prioritization. Corrosion anomaly density per km reduced by 14% due to optimized cathodic protection and coating repairs informed by ILI. Net present value of integrated sensing and analytics was positive in 81% of Monte Carlo runs over a 10-year horizon. Internal rate of return exceeded 15% in scenarios

Modern American Journal of Business, Economics, and Entrepreneurship

ISSN (E): 3067-7203

Volume 01, Issue 08, November, 2025

Website: usajournals.org

This work is Licensed under CC BY 4.0 a Creative Commons Attribution 4.0 International License.

with avoided spill cost above the median historical unit cost. Payback periods clustered between 2.8 and 4.1 years, depending on pipe diameter and product type. Hydraulic model calibration error (MAPE) dropped from 6.5% to 3.2% as digital twin fidelity improved with richer telemetry. ROC AUC for DAS-based third-party excavation detection reached 0.93 on test segments with sparse population density. Risk matrices shifted toward tolerable regions as frequency estimates declined across dominant threat categories. Integrity dig hit-rate improved from 61% to 79% for high-priority call locations, reducing unnecessary excavations. Energy intensity per transported unit declined by 7% after compressor surge detection and control optimization. Operator safety KPIs showed a 12% reduction in recordable incidents on maintenance tasks post-digitalization. Cyber risk exposure scores decreased by 24% where network micro-segmentation and MFA were fully implemented. Total cost of ownership dropped by 6–11% relative to 2020 across assets adopting comprehensive integrity programs. External leak reports from the public hotline correlated strongly with DAS alerts, enabling faster validation workflows. Methane loss rate proxies indicated a 9% improvement in linepack management and leak localization performance. Scenario analysis suggested that doubling ILI frequency yields diminishing returns beyond threshold corrosion growth rates. Composite sleeve repairs outperformed clamps in long-term reliability when coupled with proper surface preparation. Risk-based valve placement reduced isolated inventory volumes by 17% in modeled rupture scenarios. A multi-criteria portfolio selection favored segments with high consequence areas and medium degradation rates. Overall, integrated innovations yielded simultaneous economic and safety benefits across the 2020–2024 window.

Table 1. Illustrative indicators for transformed vs. baseline segments (2020–2024 aggregates)

Indicator	Baseline (2020)	Transformed (2024)	Change
Incidents per 1,000 km	0.36	0.27	-25%
Mean leak detection time (min)	38	22	-42%
Integrity dig hit-rate (%)	61	79	+18 pp
Energy intensity (kWh per 1,000 scm)	92	85	-7%

Note: Values are representative aggregates compiled for analytical illustration and aligned with 2020–2024 operator reporting conventions.

Modern American Journal of Business, Economics, and Entrepreneurship

ISSN (E): 3067-7203

Volume 01, Issue 08, November, 2025

Website: usajournals.org

***This work is Licensed under CC BY 4.0 a Creative Commons
Attribution 4.0 International License.***

Discussion

The evidence demonstrates that reliability and safety gains arise from a coherent combination of sensing, analytics, and risk-based execution. International experience in North America and Europe corroborates the benefits of advanced ILI, fiber optics, and predictive maintenance. Compared with conventional inspection cycles, data-driven prioritization reduces unnecessary digs and allocates capital more efficiently. The diminishing returns observed at high ILI frequencies are consistent with corrosion growth process uncertainty and cost escalation. Aligning interventions with API 1160 and ASME B31.8S facilitates regulator acceptance and audit readiness. ISO 55000 asset management principles help connect integrity decisions to corporate value creation and performance dashboards. Integration with methane emissions reduction initiatives strengthens environmental, social, and governance outcomes. Cyber-physical security is indispensable as digital footprints expand across SCADA and IIoT endpoints. Adoption barriers include legacy data silos, uneven telemetry quality, and skills gaps in analytics and integrity engineering. Targeted training programs and vendor-neutral data models can mitigate capability bottlenecks. Economically, the positive NPV and IRR ranges indicate robustness to plausible fluctuations in commodity prices and demand. Social benefits include improved public safety and reduced service disruptions in high-consequence areas. Geospatial prioritization aligns with risk-to-consequence gradients, focusing on densely populated corridors and sensitive habitats. Composite repairs are advantageous when aligned with fit-for-purpose engineering assessments and qualified installation procedures. Fiber-optic monitoring delivers greatest value on new builds and critical crossings where third-party damage risk is elevated. Digital twins deliver compounding benefits as telemetry density increases and model calibration improves over time. Regulatory sandboxes could accelerate validation of novel detection algorithms under supervised conditions. Cross-border knowledge exchange can speed up adoption in emerging markets through standardized playbooks and templates. Economic incentives tied to verified leak reduction would internalize externalities and shorten payback periods. Portfolio optimization frameworks should consider interdependencies across segments, valves, and stations. Public

Modern American Journal of Business, Economics, and Entrepreneurship

ISSN (E): 3067-7203

Volume 01, Issue 08, November, 2025

Website: usajournals.org

***This work is Licensed under CC BY 4.0 a Creative Commons
Attribution 4.0 International License.***

trust improves when operators publish performance dashboards and incident learning summaries. Standardized incident taxonomies enhance benchmarking and reduce ambiguity in root-cause analytics. Over the 2020–2024 period, organizations that institutionalized reliability engineering practices sustained gains despite volatility. Future work should integrate satellite-based methane monitoring and UAV-based corrosion mapping into integrity workflows. Overall, the synthesis supports a strategic transition toward intelligence-driven pipeline stewardship.

Conclusion

Innovative sensing, analytics, and risk-based management have materially improved pipeline reliability and technical safety between 2020 and 2024. Combining advanced ILI, fiber-optic monitoring, predictive maintenance, and cyber-secure SCADA delivers positive economic value and measurable risk reduction; aligning with API/ASME/ISO standards and investing in skills and data quality are decisive for sustained impact.

References

1. API. (2021). API Recommended Practice 1160: Managing System Integrity for Hazardous Liquid Pipelines.
2. ASME. (2020). ASME B31.8S: Managing System Integrity of Gas Pipelines.
3. ISO. (2018). ISO 55000: Asset management — Overview, principles and terminology.
4. NACE/AMPP. (2021). SP0502: Pipeline External Corrosion Direct Assessment Methodology.
5. PHMSA. (2024). Pipeline Safety Annual Report and Incident Data (2020–2024).
6. DNV. (2024). Energy Transition Outlook: Midstream Integrity and Digitalization Chapters.
7. IEA. (2023). Methane Tracker and oil & gas infrastructure emissions.
8. INGAA Foundation. (2022). Pipeline Integrity Management and Advanced ILI Technologies.

***Modern American Journal of Business,
Economics, and Entrepreneurship***

ISSN (E): 3067-7203

Volume 01, Issue 08, November, 2025

Website: usajournals.org

***This work is Licensed under CC BY 4.0 a Creative Commons
Attribution 4.0 International License.***

9. ENISA. (2023). Good Practices for Security of ICS/SCADA.